Sains Malaysiana 54(1)(2025): 131-150

http://doi.org/10.17576/jsm-2025-5401-11

 

Angiogenesis Effects of Dental Stem Cells Cultured on Polymer Scaffolds

(Kesan Angiogenesis Sel Stem Pergigian yang Dibiakkan pada Perancah Polimer)

 

NUR NAJMI MA1, NOOR HASILA AD1&, FAZREN AZMI3&, THANAPHUM OSATHANON4&, ROHAYA MEGAT ABDUL WAHAB2& & FARINAWATI YAZID2,*

 

1Programme of Biomedical Science, Centre of Toxicology & Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
2Discipline of Pediatric Dentistry, Department of Family Oral Health, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
3Faculty of Pharmacy, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Malaysia
4Dental Stem Cell Biology Research Unit, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University,
Bangkok, Thailand

 

Received: 20 February 2024/Accepted: 6 November 2024

 

These authors contributes equally to this work

&These authors contribute equally to this work

 

Abstract

Following the PRISMA-ScR guidelines, three electronic databases were searched (PubMed, Scopus and Web of Science) to identify the related studies using specific keywords and terms. The abstracts were evaluated for inclusion and exclusion criteria. The included publications were descriptively analysed. Out of 296 articles found, only nine were included for analysis. The objective of this study was to assess the angiogenesis effects of dental stem cells cultured in a polymer scaffold by evaluating their ability to promote blood vessel formation, cell viability, and tissue regeneration, thereby providing insights into their potential therapeutic applications in regenerative medicine. Previous studies mainly focused on polymer scaffold research, neglecting the crucial aspect of angiogenesis in pulp regeneration. Despite DPSCs' versatility in bone regeneration, more research is needed to understand their relationship with angiogenesis. The untapped potential of DPSCs in promoting blood vessel formation and tissue regeneration requires further exploration. Limited investigation exists on how the combination of stem cell, angiogenic, and dentin markers affects angiogenesis in DPSCs. The morphological changes DPSCs undergo in scaffold environments and the gene/protein expression analyses in DPSCs on scaffolds with angiogenic factors are areas that still need exploration. This research gap holds promise for enhanced understanding and advancement in tissue engineering and regenerative medicine, particularly in DPSCs' connection with scaffolds and angiogenesis. There has been limited research on the interplay of DPSCs, polymer scaffolds, and angiogenesis, with unexplored combined consequences on tissue regeneration. Scaffold-based techniques to investigate angiogenesis with DPSCs are uncommon. Further research might transform tissue engineering and regenerative medicine, spanning beyond dentistry.

 

Keywords: Angiogenesis; dental pulp stem cells; dentinogenesis; scaffold

 

Abstrak

Mengikut garis panduan PRISMA-ScR, tiga pangkalan data elektronik (PubMed, Scopus dan Web of Science) telah dicari untuk mengenal pasti kajian berkaitan menggunakan kata kunci dan istilah tertentu. Abstrak dinilai untuk kriteria kemasukan dan pengecualian. Penerbitan yang terpilih telah dianalisis secara deskriptif. Daripada 296 artikel yang diperoleh, hanya sembilan diterima untuk analisis. Objektif kajian ini adalah untuk menilai kesan angiogenesis sel stem pergigian yang dikultur dalam perancah polimer dengan menilai keupayaan mereka untuk menggalakkan pembentukan saluran darah, daya tahan sel dan penjanaan semula tisu, seterusnya memberikan pandangan tentang potensi aplikasi terapeutik mereka dalam perubatan regeneratif. Kajian terdahulu tertumpu terutamanya pada penyelidikan perancah polimer, mengabaikan aspek penting angiogenesis dalam penjanaan semula pulpa. Walaupun DPSC serba boleh dalam penjanaan semula tulang, lebih banyak penyelidikan diperlukan untuk memahami hubungan mereka dengan angiogenesis. Potensi DPSC yang belum diterokai dalam menggalakkan pembentukan saluran darah dan penjanaan semula tisu memerlukan penerokaan lanjut. Penyelidikan terhad wujud tentang bagaimana gabungan penanda sel stem, angiogenik dan dentin mempengaruhi angiogenesis dalam DPSC. Perubahan morfologi yang dialami DPSC dalam persekitaran perancah dan analisis ekspresi gen/protein dalam DPSC pada perancah dengan faktor angiogenik masih memerlukan penerokaan. Jurang penyelidikan ini menjanjikan pemahaman dan kemajuan yang lebih baik dalam kejuruteraan tisu dan perubatan regeneratif, terutamanya dalam hubungan DPSC dengan perancah dan angiogenesis. Penyelidikan yang terhad mengenai interaksi DPSC, perancah polimer dan angiogenesis serta tiada penerokaan mengenai penggabungan semua faktor ini dalam penjanaan semula tisu. Teknik berasaskan perancah untuk mengkaji angiogenesis dengan DPSC jarang berlaku. Justeru, penyelidikan lanjut mungkin mengubah kejuruteraan tisu dan perubatan regeneratif pergigian.

 

Kata kunci: Angiogenesis; dentinogenesis; perancah; sel stem pulpa pergigian

 

REFERENCES

Adair, T.H. & Montani, J.P. 2011. Overview of angiogenesis. Angiogenesis. Morgan & Claypool Life Sciences.

Ahmed, S., Gan, H.K., Chen, F.L., Anuradha, P., Ramasamy, S., Tay, Y., Tham, M. & Yu, Y.H. 2009. Transcription factors and neural stem cell self-renewal, growth and differentiation. Cell Adh. Migr. 3(4): 412-424.

Akwii, R.G., Sanaullah, S., Fatema, T.Z. & Mikelis, C.M. 2019. Role of angiopoietin-2 in vascular physiology and pathophysiology. Cells 8(5): 471.

Alfonso, B.F. & Al-Rubeai, M. 2011. Flow cytometry. In Comprehensive Biotechnology (Third Edition), edited by Moo-Young, M. Pergamon. pp. 541-560.

‌Allah, N.U.M., Berahim, Z., Ahmad, A. & Ponnuraj, K.T. 2020. Effect of FGF-2 and PDGF-BB on a co-culture of human gingival fibroblasts and umbilical vein endothelial cells. Sains Malaysiana 49(8): 1865-1874.

Alvarez-Barrientos, A., Arroyo, J., Cantón, R., Nombela, C. & Sanchez-Perez, M. 2000. Applications of flow cytometry to clinical microbiology. Clin. Microbiol. Rev. 13(2): 167-195.

Andrae, J., Gallini, R. & Christer, B. 2008. Role of platelet-derived growth factors in physiology and medicine. Genes Dev. 22(10): 1276-1312.

Antonino, P., Kleinman, H.K. & Martin, G.R. 2021. Matrigel: History/background, uses, and future applications. J. Cell Commun. Signal. 16(4): 621-626.

Azar, D.T. 2016. Corneal angiogenic privilege:Angiogenic and antiangiogenic factors in corneal avascularity, vasculogenesis, and wound healing. Transactions of the American Ophthalmological Society 104: 264-302.

‌Baptista, P.M., Moran, E.C., Vyas, D., Shupe, T. & Soker, S.2014. Liver regeneration and bioengineering: The role of liver extra-cellular matrix and human stem/progenitor cells. In Regenerative Medicine Applications in Organ Transplantation, edited by Orlando, G., Lerut, J., Soker, S. & Stratta, R.J. Massachusetts: Academic Press. pp. 391-400.

Bar, J., Lis-Nawara, A. & Piotr, G. 2021.  Dental pulp stem cell-derived secretome and its regenerative potential. International Journal of Molecular Sciences 22(21): 12018-12018.

Baru, O., Nutu, A., Braicu, C., Cismaru, C.A., Berindan-Neagoe, I., Buduru, S. & Badea, M. 2021. Angiogenesis in regenerative dentistry: Are we far enough for therapy? Int. J. Mol. Sci. 22(2): 929.

Cabral-Pacheco, G.A., Garza-Veloz, I., Castruita-De la Rosa, C., Ramirez-Acuña, J.M., Perez-Romero, B.A., Guerrero-Rodriguez, J.F., Martinez-Avila, N. & Martinez-Fierro, M.L. 2020. The roles of matrix metalloproteinases and their inhibitors in human diseases. Int. J. Mol. Sci. 21(24): 9739.

Cao, R., Anna, F.E., Kubo, H., Alitalo, K., Cao, Y. & Thyberg, J. 2004. Comparative evaluation of FGF-2–, VEGF-A–, and VEGF-C–induced angiogenesis, lymphangiogenesis, vascular fenestrations, and permeability. Circulation Research 94(5): 664-670.

Carmeliet, P. & Jain, R.K. 2011. Molecular mechanisms and clinical applications of angiogenesis. Nature 473(7347): 298-307.

Cavalcanti, B.N., Zeitlin, B.D. & Nör, J.E. 2013. A hydrogel scaffold that maintains viability and supports differentiation of dental pulp stem cells. Dental Materials 29(1): 97-102.

Chan, B.P. & Leong, K.W. 2008. Scaffolding in tissue engineering: General approaches and tissue-specific considerations. European Spine Journal 17(S4): 467-479.

DeCicco-Skinner, K.L., Henry, G.H., Cataisson, C., Tabib, T., Gwilliam, J.C., Watson, N.J., Bullwinkle, E.M., Falkenburg, L., O'Neill, R.C., Morin, A. & Wiest, J.S. 2014. Endothelial cell tube formation assay for the in vitro study of angiogenesis. J. Vis. Exp. 91: e51312. Demarco, F.F., Conde, M.C., Cavalcanti, B.N., Casagrande, L., Sakai, V.T. & Nör, J.E. 2011. Dental pulp tissue engineering. Braz. Dent. J. 22(1): 3-13.

Deng, W.S., Ma, K., Liang, B., Liu, X.Y., Xu, H.Y., Zhang, J., Shi, H.Y., Sun, H.T., Chen, X.Y. & Zhang, S. 2020. Collagen scaffold combined with human umbilical cord-mesenchymal stem cells transplantation for acute complete spinal cord injury. Neural Regen. Res.15(9): 1686-1700.

Diana, R., Ardhani, R., Kristanti, Y. & Santosa, P. 2020. Dental pulp stem cells response on the nanotopography of scaffold to regenerate dentin-pulp complex tissue. Regen. Ther. 15: 243-250.

Dissanayaka, W.L., Hargreaves, K.M., Jin, L., Samaranayake, L.P. & Zhang, C. 2015. The interplay of dental pulp stem cells and endothelial cells in an injectable peptide hydrogel on angiogenesis and pulp regeneration in vivo. Tissue Engineering Part A. 21(3-4): 550-563.

Divband, B., Pouya, B., Hassanpour, M., Alipour, M., Salehi, R., Rahbarghazi, R., Shahi, S., Aghazadeh, Z. & Aghazadeh, M. 2022. Towards induction of angiogenesis in dental pulp stem cells using chitosan-based hydrogels releasing basic fibroblast growth factor. BioMed Research International 2022: 5401461.

Dudley, A.C. & Griffioen, A.W. 2023. Pathological angiogenesis: Mechanisms and therapeutic strategies. Angiogenesis 26(3): 313-347.

Farinawati Yazid, Nur Atmaliya Luchman, Rohaya Megat Abdul Wahab, Shahrul Hisham Zainal Ariffin & Sahidan Senafi. 2018. Proliferation and osteoblast differentiation mice dental pulp stem cells between enzyme digestion and outgrowth method. Sains Malaysiana 47(4): 691-698.

Ferro, F., Spelat, R. & Baheney, C.S. 2014. Dental pulp stem cell (DPSC) isolation, characterization, and differentiation. Methods in Molecular Biology 1210: 91-115.

Galler, K.M., Weber, M., Korkmaz, Y., Widbiller, M. & Feuerer, M. 2021. Inflammatory response mechanisms of the dentine–pulp complex and the periapical tissues. Int. J. Mol. Sci. 22(3): 1480.

Galler, K.M., Hartgerink, J.D., Cavender, A., Schmalz, G. & D’Souza, R.N. 2012. A customized self-assembling peptide hydrogel for dental pulp tissue engineering. Tissue Engineering Part A 18(1-2): 176-184.

Gerhardt, H., Golding, M., Fruttiger, M., Ruhrberg, C., Lundkvist, A., Abramsson, A., Jeltsch, M., Mitchell, C., Alitalo, K., Shima, D. & Betsholtz, C. 2003. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. Journal of Cell Biology 161(6): 1163-1177.

Gharaei, M.A., Xue, Y., Mustafa, K., Lie, S.A. & Fristad, I. 2018. Human dental pulp stromal cell conditioned medium alters endothelial cell behavior. Stem Cell Research & Therapy 9: 69.

Goldberg, M., Kulkarni, A.B., Young, M.F. & Boskey, A.L. 2011. Dentin structure composition and mineralization. Front Biosci. (Elite Ed) 3(2): 711-735.

Guerrero, P.A. & McCarty, J.H. 2017. TGF-β activation and signaling in angiogenesis. In Physiologic and Pathologic Angiogenesis - Signaling Mechanisms and Targeted Therapy, edited by Simionescu, D. & Simionescu, A. InTech. doi:10.5772/66405

Guo, B. & Ma, P.X. 2014. Synthetic biodegradable functional polymers for tissue engineering: A brief review. Sci. China Chem. 57(4): 490-500.

Hagar, M.N., Yazid, F., Luchman, N.A., Ariffin, S.H.Z. & Wahab, R.M.A. 2021. Comparative evaluation of osteogenic differentiation potential of stem cells derived from dental pulp and exfoliated deciduous teeth cultured over granular hydroxyapatite based scaffold. BMC Oral Health 21(1): 263.  

Hilkens, P., Gervois, P., Fanton, Y., Vanormelingen, J., Martens, W., Struys, T., Politis, C., Lambrichts, I. & Bronckaers, A. 2013. Effect of isolation methodology on stem cell properties and multilineage differentiation potential of human dental pulp stem cells. Cell Tissue Res. 353(1): 65-78.

Huang, X., Wang, F., Zhao, C., Yang, S., Cheng, Q., Tang, Y., Zhang, F., Zhang, Y., Luo, W., Wang, C., Zhou, P., Kim, S., Zuo, G., Hu, N., Li, R., He, T.C. & Zhang, H. 2019. Dentinogenesis and tooth-alveolar bone complex defects in BMP9/GDF2 knockout mice. Stem Cells Dev. 28(10): 683-694.

Iannace, S., Sorrentino, L. & Di Maio, E. 2014. Biodegradable biomedical foam scaffolds. In Biomedical Foams for Tissue Engineering Applications, edited by Netti, P.A. Woodhead Publishing. pp. 163-187.

Islam, Z., Ali, A.M., Naik, A., Mohamed, A.E., Decock, J. & Kolatkar, P.R. 2021. Transcription factors: The fulcrum between cell development and carcinogenesis. Frontiers in Oncology https://doi.org/10.3389/fonc.2021.681377

Jia, T., Jacquet, T., Dalonneau, F., Coudert, P., Vaganay, E., Exbrayat-Héritier, C., Vollaire, J., Josserand, V., Ruggiero, F., Coll, J-L. & Eymin, B. 2021. FGF-2 promotes angiogenesis through a SRSF1/SRSF3/SRPK1-dependent axis that controls VEGFR1 splicing in endothelial cells. BMC Biology 19: 173.

‌Johnson, K.E. & Wilgus, T.A. 2014. Vascular endothelial growth factor and angiogenesis in the regulation of cutaneous wound repair. Adv. Wound Care (New Rochelle)3(10): 647-661.

Kandhwal, M., Behl, T., Singh, S., Sharma, N., Arora, S., Bhatia, S., Al-Harrasi, A., Sachdeva, M. & Bungau, S. 2022. Role of matrix metalloproteinase in wound healing. American Journal of Translational Research 14(7): 4391-4405.

Kashyap, V., Rezende, N.C., Scotland, K.B., Shaffer, S.M., Persson, J.L., Gudas, L.J. & Mongan, N.P. 2009. Regulation of stem cell pluripotency and differentiation involves a mutual regulatory circuit of the NANOG, OCT4, and SOX2 pluripotency transcription factors with polycomb repressive complexes and stem cell microRNAs. Stem Cells Dev. 18(7): 1093-1108.  

Kelley, M.E., Fierstein, S.R., Purkey, L. & DeCicco-Skinner, K.L. 2022. Endothelial cell tube formation assay: An in vitro model for angiogenesis. Methods Mol. Biol. 2475: 187-196.  

Kenakin, T.P. 2019. The drug discovery process. A Pharmacology Primer: Techniques for More Effective and Strategic Drug Discovery. 5th ed. London: Academic Press. pp. 323-371. https://doi.org/10.1016/b978-0-12-813957-8.00011-4

Kennedy, D.C., Wheatley, A.M. & McCullagh, K.J.A. 2022. VEGF-A and FGF4 engineered C2C12 myoblasts and angiogenesis in the chick chorioallantoic membrane. Biomedicines 10(8): 1781.  

‌Khanna, A., Zamani, M. & Huang, N.F. 2021. Extracellular matrix-based biomaterials for cardiovascular tissue engineering. Journal of Cardiovascular Development and Disease 8(11): 137.

Kim, W.T. & Ryu, C.J. 2017. Cancer stem cell surface markers on normal stem cells. BMB Rep.50(6): 285-298.

Kumar, V., Vashishta, M., Kong, L., Wu, X., Lu, J.J., Guha, C. & Dwarakanath, B.S. 2021. The role of notch, hedgehog, and wnt signaling pathways in the resistance of tumors to anticancer therapies. Front Cell Dev. Biol. 9: 650772.

‌Kuntze, M.M., Mendes Souza, B.D., Schmidt, T.F., de Almeida, J., Bortoluzzi, E.A. & Felippe, W.T. 2020. Scanning electron microscopy evaluation of dentin ultrastructure after surface demineralization. J. Conserv. Dent. 23(5): 512-517.

Kwak, K.H. & Lee, H.W. 2022. Clinical potential of dental pulp stem cells in pulp regeneration: Current endodontic progress and future perspectives. Frontiers in Cell and Developmental Biology 10: 857066.

La Noce, M., Paino, F., Spina, A., Naddeo, P., Montella, R., Desiderio, V., De Rosa, A., Papaccio, G., Tirino, V. & Laino, L. 2014. Dental pulp stem cells: State of the art and suggestions for a true translation of research into therapy. Journal of Dentistry 42(7): 761-768.

Lamalice, L., Le Boeuf, F. & Huot, J. 2007. Endothelial cell migration during angiogenesis. Circulation Research 100(6): 782-794.

Ledesma-Martínez, E., Mendoza-Núñez, V.M. & Santiago-Osorio, E. 2016. Mesenchymal stem cells derived from dental pulp: A review. Stem Cells Int. 2016: 4709572.

Levac, D., Colquhoun, H. & O’Brien, K.K. 2010. Scoping studies: Advancing the methodology. Implementation Science 5: 69.

Li, Y., Zhao, L. & Li, X-F. 2021. Hypoxia and the tumor microenvironment. Technol. Cancer Res. Treat. 20: 15330338211036304.

Liu, M., Zhao, L., Hu, J., Wang, L., Li, N., Wu, D., Shi, X., Yuan, M., Hu, W. & Wang, X. 2018. Endothelial cells and endothelin‑1 promote the odontogenic differentiation of dental pulp stem cells. Molecular Medicine Reports 18(1): 893-901.

Luo, L., Xing, Z., Liao, X., Li, Y., Luo, Y., Ai, Y., He, Y. & Ye, Q. 2022. Dental pulp stem cells‐based therapy for the oviduct injury via immunomodulation and angiogenesis in vivo. Cell Proliferation 55(10): e13293.

Lv, F-J., Tuan, R.S., Cheung, K.M.C. & Leung, V.Y.L. 2014. Concise review: The surface markers and identity of human mesenchymal stem cells. Stem Cells 32(6): 1408-1419.  

Magaki, S., Hojat, S.A., Wei, B., So, A. & Yong, W.H. 2018. An introduction to the performance of immunohistochemistry. Methods Mol. Biol. 1897: 289-298.

Mahmood, T. & Yang, P-C. 2012. Western blot: Technique, theory, and trouble shooting. N. Am. J. Med. Sci.4(9): 429-434.

‌Mangano, C., Paino, F., d’Aquino, R., De Rosa, A., D.R., Iezzi, G., Piattelli, A., Laino, L., Mitsiadis, T., Desiderio, V., Mangano, F., Papaccio, G. & Tirino, V. 2011. Human dental pulp stem cells hook into biocoral scaffold forming an engineered biocomplex. PLoS ONE 6(4): e18721.

Marrelli, M., Codispoti, B., Shelton, R.M., Scheven, B.A., Cooper, P.R., Tatullo, M. & Paduano, F. 2018. Dental pulp stem cell mechanoresponsiveness: Effects of mechanical stimuli on dental pulp stem cell behavior. Frontiers in Physiology 9: 1685.

Marwa, T., Rosellini, E., Niccoletta, B., Maria, G.C., Rai, R., Guillaume, S.P. & Boccaccini, A.R. 2015. Strategies for the chemical and biological functionalization of scaffolds for cardiac tissue engineering: A review. Journal of the Royal Society Interface 12(108): 20150254.

Mastrullo, V., Cathery, W., Eirini, V., Paolo, M. & Campagnolo, P. 2020. Angiogenesis in tissue engineering: As nature intended? Frontiers in Bioengineering and Biotechnology 8: 188.

Mattei, V., Martellucci, S., Pulcini, F., Santilli, F., Sorice, M. & Simona, D.M. 2021. Regenerative potential of DPSCs and revascularization: Direct, paracrine or autocrine effect? Stem Cell Reviews and Reports 17(5): 1635-1646.

Mazzarini, M., Falchi, M., Bani, D. & Anna, R.M. 2020. Evolution and new frontiers of histology in bio‐medical research. Microscopy Research & Technique 84(2): 217-237.

Mbagwu, S.I. & Filgueira, L. 2020. Differential expression of CD31 and von Willebrand Factor on endothelial cells in different regions of the human brain: Potential implications for cerebral malaria pathogenesis. Brain Sciences 10(1): 31.

McKinnon, K.M. 2018. Flow cytometry: An overview. Curr. Protoc. Immunol. 120: 5.1.1-5.1.11.

Mo, Y., Wan, R. & Zhang, Q. 2012. Application of reverse transcription-PCR and real-time PCR in nanotoxicity research. Methods in Molecular Biology 926: 99-112.  

Mortada, I. & Mortada, R. 2018. Dental pulp stem cells and osteogenesis: An update. Cytotechnology 70(5): 1479-1486.

Nguyen, P.K., Nag, D. & Wu, J.C. 2010. Methods to assess stem cell lineage, fate and function. Advanced Drug Delivery Reviews 62(12): 1175-1186.

‌Niu, G. & Chen, X. 2010. Vascular endothelial growth factor as an anti-angiogenic target for cancer therapy. Curr. Drug Targets 11(8): 1000-1017.

Nur Syahidah Nor Hisam, Azizah Ugusman, Nor Fadilah Rajab, Karina Di Gregoli, Mohd Faizal Ahmad & Nur Najmi Mohamed Anuar 2023. Navitoclax mediates Interleukin-3 induced human umbilical vein endothelial cells survival and angiogenesis. PREPRINT (Version 1) Research Square. https://doi.org/10.21203/rs.3.rs-2759691/v1

Ogata, K., Moriyama, M., Mayu, M.K., Tatsuya, K., Yano, A. & Nakamura, S. 2022. The therapeutic potential of secreted factors from dental pulp stem cells for various diseases. Biomedicines 10(5): 1049.

Olver, T.D., Ferguson, B.S. & Laughlin, M.H. 2015. Molecular mechanisms for exercise training-induced changes in vascular structure and function:  Skeletal muscle, cardiac muscle, and the brain. Prog. Mol. Biol. Transl. Sci. 135: 227-257.

Paula, A.B., Laranjo, M., Marto, C.M., Paulo, S., Abrantes, A.M., Fernandes, B., Casalta-Lopes, J., Marques-Ferreira, M., Botelho, M.F. & Carrilho, E. 2019. Evaluation of dentinogenesis inducer biomaterials: An in vivo study. J. Appl. Oral. Sci. 28: e20190023.

Pazhanisamy, S. 2013. Stem cell markers. Materials and Methods 3: 200.

Peters, M.D.J., Godfrey, C., McInerney, P., Munn, Z., Tricco, A.C. & Khalil, H. 2020. Chapter 11: Scoping reviews. In JBI Manual for Evidence Synthesis, edited by Aromataris, E. & Munn, Z. JBI.

Ponce, M.L. 2001. In vitro matrigel angiogenesis assays. Methods Mol. Med. 46: 205-209.

Prasad, M., Butler, W.T. & Qin, C. 2010. Dentin sialophosphoprotein (DSPP) in biomineralization. Connect Tissue Res. 51(5): 404-417.

Quintero-Fabián, S., Arreola, R., Becerril-Villanueva, E., Torres-Romero, J.C., Arana-Argáez, V., Lara-Riegos, J., Ramírez-Camacho, M.A. & Alvarez-Sánchez, M.E. 2019. Role of matrix metalloproteinases in angiogenesis and cancer. Front Oncol. 9: 1370.

Raica, M. & Cimpean, A.M. 2010. Platelet-derived growth factor (PDGF)/PDGF receptors (PDGFR) axis as target for antitumor and antiangiogenic therapy. Pharmaceuticals (Basel) 3(3): 572-599.

‌Rashid, B., Husnain, T. & Riazuddin, S. 2014. Chapter 1 - Genomic approaches and abiotic stress tolerance in plants. In Emerging Technologies and Management of Crop Stress Tolerance, edited by Ahmad, P. & Rasool, S. Massachusetts: Academic Press. pp. 1-37.  

Ravindran, S. & George, A. 2015. Dentin matrix proteins in bone tissue engineering. Adv. Exp. Med. Biol. 881: 129-142.

Roy, R., Yang, J. & Moses, M.A. 2019. Matrix metalloproteinases as novel biomarker s and potential therapeutic targets in human cancer. J. Clin. Oncol. 27(31): 5287-5297.

Saghiri, M.A., Asatourian, A., Sorenson, C.M. & Sheibani, N. 2015. Role of angiogenesis in endodontics: Contributions of stem cells and proangiogenic and antiangiogenic factors to dental pulp regeneration. J. Endod. 41(6): 797-803.

Sakamoto, S., Putalun, W., Vimolmangkang, S., Phoolcharoen, W., Shoyama, Y., Tanaka, H. & Morimoto, S. 2017. Enzyme-linked immunosorbent assay for the quantitative/qualitative analysis of plant secondary metabolites. J. Nat. Med. 72(1): 32-42.

Sasaki, J., Zhang, Z., Min, J.O., Andrea-Mantesso, P., Satoshi, I., Shi, S. & Nör, J.E. 2020. VE-Cadherin and anastomosis of blood vessels formed by dental stem cells. Journal of Dental Research 99(4): 437-445.

‌Shibuya, M. 2011. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: A crucial target for anti- and pro-angiogenic therapies. Genes & Cancer 2(12): 1097-1105.

Sidney, L.E., Branch, M.J., Dunphy, S.E., Dua, H.S. & Hopkinson, A. 2014. Concise review: Evidence for CD34 as a common marker for diverse progenitors. Stem Cells 32(6): 1380-1389.

Singh, K., Miaskowski, C., Dhruva, A.A., Flowers, E. & Kober, K.M. 2018. Mechanisms and measurement of changes in gene expression. Biol. Res. Nurs. 20(4): 369-382.

Sivadas, V.P., Rahul, D.P. & Nair, P.D. 2021. Chapter 5 - Multipotent nature of dental pulp stem cells for the regeneration of varied tissues A personalized medicine approach. In Regenerated Organs, edited by Sharma, C.P. Massachusetts: Academic Press. pp. 97-118.

Smith, A.J. & Sharpe, P.T. 2014. Chapter 70 - Biological tooth replacement and repair. In Principles of Tissue Engineering (Fourth Edition), edited by Lanza, R., Langer, R. & Vacanti, J. Massachusetts: Academic Press. pp. 1471-1485,

Soudi, A., Yazdanian, M., Ranjbar, R., Tebyanian, H., Yazdanian, A., Tahmasebi, E., Keshvad, A. & Seifalian, A. 2021. Role and application of stem cells in dental regeneration: A comprehensive overview. EXCLI J. 20: 454-489.

Staton, C.A., Reed, M.W. & Brown, N.J. 2009. A critical analysis of current in vitro and in vivo angiogenesis assays. Int. J. Exp. Pathol. 90(3): 195-221.

Suamte, L., Tirkey, A., Barman, J. & Jayasekhar Babu, P. 2023. Various manufacturing methods and ideal properties of scaffolds for tissue engineering applications. Smart Materials in Manufacturing 1: 100011.

Suzuki, S., Naoto, H., Nishimura, F. & Kulkarni, A.B. 2012. Dentin sialophosphoprotein and dentin matrix protein-1: Two highly phosphorylated proteins in mineralized tissues. Arch. Oral Biol. 57(9): 1165-1175.

Swain, N., Thakur, M., Pathak, J. & Swain, B. 2020. SOX2, OCT4 and NANOG: The core embryonic stem cell pluripotency regulators in oral carcinogenesis. J. Oral Maxillofac. Pathol. 24(2): 368-373.

Tahergorabi, Z. & Khazaei, M. 2012. A review on angiogenesis and its assays. Iranian Journal of Basic Medical Science 15(6): 1110-1126.

Tanabe, S. 2015. Signaling involved in stem cell reprogramming and differentiation. World J. Stem Cells 7(7): 992-998.

Thomas, N.V., Manivasagan, P. & Kim, S.K. 2014. Potential matrix metalloproteinase inhibitors from edible marine algae: A review. Environ. Toxicol. Pharmacol. 37(3): 1090-1100.

Thottappillil, N. & Nair, P.D. 2015. Scaffolds in vascular regeneration: current status. Vascular Health and Risk Management 11: 79-91.

Tien, N., Lee, J-J., Lee, A.K-X., Lin, Y.H., Chen, J-X., Kuo, T-Y. & Shie, M-Y. 2021. Additive manufacturing of caffeic acid-inspired mineral trioxide aggregate/poly-ε-caprolactone scaffold for regulating vascular induction and osteogenic regeneration of dental pulp stem cells. Cells 10(11): 2911.

Staniowski, T., Zawadzka-Knefel, A. & Skośkiewicz-Malinowska, K. 2021. Therapeutic potential of dental pulp stem cells according to different transplant types. Molecules 26(24): 7423.

Tricco, A.C., Lillie, E., Zarin, W., O'Brien, K.K., Colquhoun, H., Levac, D., Moher, D., Peters, M.D.J., Horsley, T., Weeks, L., Hempel, S., Akl, E.A., Chang, C., McGowan, J., Stewart, L., Hartling, L., Aldcroft, A., Wilson, M.G., Garritty, C., Lewin, S., Godfrey, C.M., Macdonald, M.T., Langlois, E.V., Soares-Weiser, K., Moriarty, J., Clifford, T., Tunçalp, Ö. & Straus, S.E. 2018. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Annals of Internal Medicine 169(7): 467-473.

‌Tsai, M.H., Megat Abdul Wahab, R., Zainal Ariffin, S.H., Azmi, F. & Yazid, F. 2023. Enhanced osteogenesis potential of MG-63 cells through sustained delivery of VEGF via liposomal hydrogel. Gels 9(7): 562.

Wang, X. & Khalil, R.A. 2018. Matrix metalloproteinases, vascular remodeling, and vascular disease. Adv. Pharmacol. 81: 241-330.

Wang, Z., Gerstein, M. & Snyder, M. 2009. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 10(1): 57-63.

Weinhardt, V., Chen, J.H., Ekman, A., McDermott, G., Le Gros, M.A. & Larabell, C. 2019. Imaging cell morphology and physiology using X-rays. Biochem. Soc. Trans. 47(2): 489-508.

Xia, K., Chen, Z., Chen, J., Xu, H., Xu, Y., Yang, T. & Zhang, Q. 2020. RGD- and VEGF-mimetic peptide epitope-functionalized self-assembling peptide hydrogels promote dentin-pulp complex regeneration. International Journal of Nanomedicine 15: 6631-6647.

Yamakoshi, Y. 2009. Dentinogenesis and dentin sialophosphoprotein (DSPP). Journal of Oral Biosciences 51(3): 134-142.

Yamakoshi, Y. 2008. Dentin sialophosphoprotein (DSPP) and dentin. Journal of Oral Biosciences 50(1): 33-44.

Yuan, S.M., Yang, X., Zhang, S., Tian, W. & Yang, B. 2022. Therapeutic potential of dental pulp stem cells and their derivatives: Insights from basic research toward clinical applications. World Journal of Stem Cells 14(7): 435-452.

Zakrzewski, W., Dobrzyński, M., Szymonowicz, M. & Rybak, Z. 2019. Stem cells: past, present, and future. Stem Cell Res. Ther. 10(1): 68.

Zielińska, A., Karczewski, J., Eder, P., Kolanowski, T., Szalata, M., Wielgus, K., Szalata, M., Kim, D., Shin, S.R., Słomski, R. & Souto, E.B. 2023. Scaffolds for drug delivery and tissue engineering: The role of genetics. Journal of Controlled Release 359: 207-223.

Zhang, M., Jiang, F., Zhang, X., Wang, S., Jin, Y., Zhang, W. & Jiang, X. 2017. The effects of platelet-derived growth factor-BB on human dental pulp stem cells mediated dentin-pulp complex regeneration. Stem Cells Translational Medicine 6(12): 2126-2134.

Zhang, Z., Oh, M., Sasaki, J. & Nör, J.E. 2021. Inverse and reciprocal regulation of p53/p21 and Bmi-1 modulates vasculogenic differentiation of dental pulp stem cells. Cell Death and Disease 12(7): 644.  

 

*Corresponding author; email: drfarinawati@ukm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next